社会焦点

万字干货总结:最全的运营数据指标解读(4)

字号+ 作者: 来源: 2017-05-23

问号后面的是网页参数,source=weixin说明网页是分享到微信的。content=h9j76g是页面具体内容,这里则是营销红包的类型。inviter=00001说明是哪个用户分享出去的,timestamp则是分享的具体时间戳。不同用户的分享页

  问号后面的是网页参数,source=weixin说明网页是分享到微信的。content=h9j76g是页面具体内容,这里则是营销红包的类型。inviter=00001说明是哪个用户分享出去的,timestamp则是分享的具体时间戳。不同用户的分享页面有不同参数,按此作区分。

  当这些页面被用户分享到朋友圈时,数据采集系统会记录所有页面的打开浏览。而页面参数则是活动精细化分析的前提。通过source=weixin,数据分析师知道了红包活动在微信的浏览量,相对应的还有QQ和微博。content则能看出用户喜欢哪个类型的红包,哪种红包被领取得多,成本又是多少。inviter则能看出平均每个分享者的分享页能带来多少浏览量。

  参数越多,分析的维度就能越细,活动可优化的空间也越大。如果大家有心的话,可以看朋友圈(包括网页)各种活动的网页参数,观察其他产品的分析维度,它山之石可以攻玉,这是一个好习惯。

  活动参与率

  活动参与率衡量活动的整体情况,可以套用用户活跃的分析指标。

  这个活动的参于人数(活跃数)多少?有多少老用户参与了这个活动?有多少新增用户因为这个活动来,传播类的活动分享数据怎么样?活动中的各个流程转化如何?活动带来多少新订单。其实,运营活动可以看作一个短生命周期的产品,产品的一切指标都能应用于其中。

  好的活动应该机制化,把它融入到产品的功能机制中,比如滴滴打车的红包,美图饿了么的红包,都是从活动逐渐变成一种打法和抓手。更早期的各类网游,也是通过活动的推成出新成为了现在常态化的游戏功能。

  活动的机制化,意味着数据要分析活动指标,发现优点以改进,之后同样常态化成报表:今天使用了多少红包,今天有多少用户因为活动新增,等等。

  营收

  产品,运营或者市场人员,从来不是为活跃、留存负责,而是商业,是企业的根本财务。数据分析也不是为了提高活跃和留存,而是像一个巨头的漏斗,最终将业务驱动于此,即回归商业的本质。

  活跃交易用户数

  从产品曝光到用户下载,用打开活跃到产生收入,产品的指标在一步步往商业靠拢,活跃交易用户则是核心指标。整个流程呈现漏斗状。

  这里的交易,即是买方的消费,也包含卖方的供应。若平台包含B端和C端,则两端同等重要,均需要纳入数据体系。

  和活跃用户一样,活跃交易用户也可以区分成首单用户(第一次消费),忠诚消费用户,流失消费用户等。细分交易数据和指标,关系到产品商业化的进展,所以是有必要的。其实到这个环节,各类指标已经更倾向用户画像,而非报表统计了。

  活跃用户交易比,统计交易用户在活跃用户中的占比。当产品活跃用户足够多,但是交易用户少,此时的商业化是有问题的,俗称的变现困难,很多公司都倒在这一步。

  GMV

  成交总金额,只要用户下单,生成订单号,便可以算在GMV里,不管用户是否真的购买了。互联网电商更偏好这个指标。

  成交金额对应的是实际流水,是用户购买后的消费金额。销售收入则是成交金额减去退款。至于利润、净利率,涉及到财务成本,数据分析挺难拿到这类数据,所以不太用到。

  把上述的三个指标看作用户支付的动态环节,则能再产生两个新指标,这也是数据分析的思维之一。成交金额与GMV的比率,实际能换算成订单支付率;销售收入和成交金额,也涉及到了退款率,当分析陷入卡顿时,不妨观察下这两个指标,或许有帮助。

  客单价

  传统行业,客单价是一位消费者每一次到场消费的平均金额。在互联网中,则是每一笔用户订单的收入,总收入/订单数。

  很多游戏或直播平台,并不关注客单价,因为行业的特性它们更关注一位用户带来的直接价值。超市购物,用户购买是长周期性的,客单价可以用于调整超市的经营策略,而游戏这类行业,用户流失率极高,运营人员更关注用户平均付费,这便是ARPU指标,总收入/用户数。

  ARPU可以再一步细分,当普通用户占比太多,往往还会采用每付费用户平均收入ARPPU,总收入/收费用户数。

  复购率

  若把复购率说成营收届的留存率,你就会知道它有多重要了。和新增用户一样,获得一个新付费用户的成本已经高于维护熟客的成本。

  在不少分析场景中,会将首单用户单独拎出来作为一个标签,将两次消费以上的用户作为老客,之所以这样做,是从一到二的意义远不止加一那么简单。

  用户第一次消费,可能是体验产品,可能是优惠,可能也是运营极大力地推动,各类因素促成了首单。而他们的第二次消费占比会有断崖式下跌(对应次日留存率的下跌),因为这时候的消费逐渐取决于用户对产品的信任,模式的喜欢或者习惯开始养成。

  很多时候,用户决策越长往往意味着客单价越高,如投资,旅游。此时首单复购率越是一个需要关注的指标,它意味着更多的利润。

  复购率更多用在整体的重复购买次数统计:单位时间内,消费两次以上的用户数占购买总用户数。

  回购率是另外一个指标,值得是上一个时间窗口内的交易用户,在下一个时间窗口内仍旧消费的比率。例如某电商4月的消费用户数1000,其中600位在5月继续消费,则回购率为60%。600位中有300位消费了两次以上,则复购率是50%。

  退货率

  退货率是一个风险指标,越低的退货率一定越好,它不仅直接反应财务水平的好坏,也关系用户体验和用户关系的维护。

  商品

  这里谈以商品为主的数据分析,商品不限于零售行业,知识市场、虚拟服务、增值服务都属于商品的一种。它有许多通用的分析模板,如购物车、进销存。

  购物篮分析

  购物篮分析不应限于电子商务分析,而是用户消费行为分析。

  连带率是购物篮分析的一种指标,特指销售件数和交易次数之比。在大型商场和购物中心中,连带消费是经营的中心,用户多次消费即连带消费。在电商中是购物的深度,是单次消费提高利润的前提。

转载请注明出处。


1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

相关文章