你真的懂TensorFlow吗?为什么会Flow?
2017-05-23 编辑:
大数据文摘作品,转载要求见文末
编译 | 邵胖胖,江凡,笪洁琼,Aileen
也许你已经下载了TensorFlow,而且准备开始着手研究深度学习。但是你会疑惑:TensorFlow里面的Tensor,也就是“张量”,到底是个什么鬼?也许你查阅了维基百科,而且现在变得更加困惑。也许你在NASA教程中看到它,仍然不知道它在说些什么?问题在于大多数讲述张量的指南,都假设你已经掌握他们描述数学的所有术语。
别担心!
我像小孩子一样讨厌数学,所以如果我能明白,你也可以!我们只需要用简单的措辞来解释这一切。所以,张量(Tensor)是什么,而且为什么会流动(Flow)?
目录
0维张量/标量
标量是一个数字
1维张量/向量
1维张量称为“向量”。
2维张量
2维张量称为矩阵
3维张量
公用数据存储在张量
时间序列数据
股价
文本数据
图片
彩色图片
5D张量
结论
让我们先来看看tensor(张量)是什么?
张量=容器
张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此把它想象成一个数字的水桶。
张量有多种形式,首先让我们来看最基本的形式,你会在深度学习中偶然遇到,它们在0维到5维之间。我们可以把张量的各种类型看作这样(对被题目中的猫咪吸引进来小伙伴说一句,不要急!猫咪在后面会出现哦!):
0维张量/标量
装在张量/容器水桶中的每个数字称为“标量”。
标量是一个数字。
你会问为什么不干脆叫它们一个数字呢?
我不知道,也许数学家只是喜欢听起来酷?标量听起来确实比数字酷。
实际上,你可以使用一个数字的张量,我们称为0维张量,也就是一个只有0维的张量。它仅仅只是带有一个数字的水桶。想象水桶里只有一滴水,那就是一个0维张量。
本教程中,我将使用Python,Keras,TensorFlow和Python库Numpy。在Python中,张量通常存储在Nunpy数组,Numpy是在大部分的AI框架中,一个使用频率非常高的用于科学计算的数据包。
你将在Kaggle(数据科学竞赛网站)上经常看到Jupyter Notebooks(安装见文末阅读链接,“数学烂也要学AI:带你造一个经济试用版AI终极必杀器”)关于把数据转变成Numpy数组。Jupyter notebooks本质上是由工作代码标记嵌入。可以认为它把解释和程序融为一体。
我们为什么想把数据转换为Numpy数组?
很简单。因为我们需要把所有的输入数据,如字符串文本,图像,股票价格,或者视频,转变为一个统一得标准,以便能够容易的处理。
这样我们把数据转变成数字的水桶,我们就能用TensorFlow处理。
它仅仅是组织数据成为可用的格式。在网页程序中,你也许通过XML表示,所以你可以定义它们的特征并快速操作。同样,在深度学习中,我们使用张量水桶作为基本的乐高积木。
1维张量/向量
如果你是名程序员,那么你已经了解,类似于1维张量:数组。
每个编程语言都有数组,它只是单列或者单行的一组数据块。在深度学习中称为1维张量。张量是根据一共具有多少坐标轴来定义。1维张量只有一个坐标轴。
1维张量称为“向量”。
我们可以把向量视为一个单列或者单行的数字。
如果想在Numpy得出此结果,按照如下方法:
我们可以通过NumPy’s ndim函数,查看张量具有多个坐标轴。我们可以尝试1维张量。
2维张量
你可能已经知道了另一种形式的张量,矩阵——2维张量称为矩阵
不,这不是基努·里维斯(Keanu Reeves)的电影《黑客帝国》,想象一个excel表格。
我们可以把它看作为一个带有行和列的数字网格。
这个行和列表示两个坐标轴,一个矩阵是二维张量,意思是有两维,也就是有两个坐标轴的张量。
在Numpy中,我们可以如下表示:
x = np.array([[5,10,15,30,25],
[20,30,65,70,90],
[7,80,95,20,30]])
我们可以把人的特征存储在一个二维张量。有一个典型的例子是邮件列表。
比如我们有10000人,我们有每个人的如下特性和特征:
First Name(名)
Last Name(姓)
Street Address(街道地址)
City(城市)
State(州/省)
Country(国家)
Zip(邮政编码)
这意味着我们有10000人的七个特征。
张量具有“形状”,它的形状是一个水桶,即装着我们的数据也定义了张量的最大尺寸。我们可以把所有人的数据放进二维张量中,它是(10000,7)。
你也许想说它有10000列,7行。
不。
张量能够被转换和操作,从而使列变为行或者行变为列。
3维张量
这时张量真正开始变得有用,我们经常需要把一系列的二维张量存储在水桶中,这就形成了3维张量。
在NumPy中,我们可以表示如下: