首页 > 社会焦点 > 正文

统计学在期权定价和交易中的应用(2)

2017-05-19 编辑:

  etf50[ 'rea_var'] = 252* np.cumsum(etf50[ 'returns'] ** 2) / np.arange(len(etf50))etf50[ 'rea_vol'] = np.sqrt(etf50[ 'rea_var'])print_statistics(etf50)

RETURN SAMPLE STATISTICS

---------------------------------------------

Mean of Daily Log Returns -0.000067

Std of Daily Log Returns 0.021153

Mean of Annua. Log Returns -0.016917

Std of Annua. Log Returns 0.335787

---------------------------------------------

Skew of Sample Log Returns -0.734791

Skew Normal Test p-value 0.000000

---------------------------------------------

Kurt of Sample Log Returns 4.597651

Kurt Normal Test p-value 0.000000

---------------------------------------------

Normal Test p-value 0.000000

---------------------------------------------

Realized Volatility 0.335789

Realized Variance 0.112754

  # histogram of annualized daily log returns

  defreturn_histogram(data):''' Plots a histogram of the returns. '''plt.figure(figsize=( 9, 5)) x = np.linspace(min(data[ 'returns'][ 1:]), max(data[ 'returns'][ 1:]), 100) plt.hist(np.array(data[ 'returns'][ 1:]), bins= 50, normed= True) y = dN1(x, np.mean(data[ 'returns'][ 1:]), np.std(data[ 'returns'][ 1:])) plt.plot(x, y, linewidth= 2) plt.xlabel( 'log returns') plt.ylabel( 'frequency/probability') plt.grid( True)return_histogram(etf50)

统计学在期权定价和交易中的应用

  etf50.index = etf50[ 'tradeDate']quotes_returns(etf50)

统计学在期权定价和交易中的应用

  期权的Greeks

期权的Greeks主要描述了期权价格对其标的的资产价格、到期时间、波动率和无风险利率四个参数值的敏感性指标。

  plot_greeks(BSM_delta, 'delta')

统计学在期权定价和交易中的应用

  plot_greeks(BSM_gamma, 'gamma')

统计学在期权定价和交易中的应用

  plot_greeks(BSM_theta, 'theta')

统计学在期权定价和交易中的应用

  plot_greeks(BSM_rho, 'rho')

统计学在期权定价和交易中的应用

  plot_greeks(BSM_vega, 'vega')

统计学在期权定价和交易中的应用

  二叉树模型和BSW模型

  BSM_benchmark = BSM_call_value(S0, K, 0, T, r, sigma)BSM_benchmark

  10.45058357218553

  CRR_option_value(S0, K, T, r, sigma, 'call', M= 2000)

  10.449583775457942

  plot_convergence( 10, 1011, 20)

统计学在期权定价和交易中的应用

  plot_convergence( 10, 1011, 25)

统计学在期权定价和交易中的应用

  动态对冲

  S, po, vt, errs, t = BSM_hedge_run(p= 25)

  APPROXIMATION OF FIRST ORDER ----------------------------- step | S_t | Delta 1 | 97.10 | -0.46 2 | 100.34 | -0.40 3 | 101.03 | -0.39 4 | 104.38 | -0.30 5 | 103.81 | -0.32 6 | 106.85 | -0.27 7 | 109.36 | -0.22 8 | 111.16 | -0.21 9 | 111.09 | -0.20 wrong 10 | 115.83 | -0.15

  (部分)

  plot_hedge_path(S, po, vt, errs, t)

统计学在期权定价和交易中的应用

  pl_list = BSM_dynamic_hedge_mcs(M= 200, I= 150000)

  Value of American Put Option is 4.461

  Delta t=0 is -0.011

  run 1000 p/l 0.044

  run 2000 p/l 0.042

  run 3000 p/l 0.305

  run 4000 p/l 0.969

  run 5000 p/l -0.330

  run 6000 p/l 0.093

  run 7000 p/l -0.438

  run 8000 p/l -0.156

  run 9000 p/l -0.126

  run 10000 p/l 0.187

  SUMMARY STATISTICS FOR P&L

  ---------------------------------

  Dynamic Replications 10000

  Time Steps 200

  Paths for Valuation 150000

  Maximum 2.358

  Average 0.008

  Median 0.006

  Minimum -1.641


大家都爱看
查看更多热点新闻