首页 > 社会焦点 > 正文

不可错过的 GAN 资源:教程、视频、代码实现、89 篇论文下载

2017-05-01 编辑:

新智元编译

来源:GitHub

整理:刘小芹

  新智元启动 2017 最新一轮大招聘:COO、总编、主笔、运营总监、视觉总监等8大职位全面开放。

  新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。加盟新智元,与人工智能业界领袖携手改变世界。

  简历投递:jobs@aiera.com.cn HR 微信:13552313024

  【新智元导读】这是一份生成对抗(神经)网络的重要论文以及其他资源的列表,由 Holger Caesar 整理,包括重要的 workshops,教程和博客,按主题分类的重要论文,视频,代码等,值得收藏学习。

  目录

  • Workshops

  • 教程 & 博客

  • 论文

      理论 & 机器学习

      视觉应用

      其他应用

      幽默

  • 视频

  • 代码

  •   Workshops

  • NIP 2016 对抗训练 Workshop

      【网页】https://sites.google.com/site/nips2016adversarial/

      【博客】http://www.inference.vc/my-summary-of-adversarial-training-nips-workshop/

  •   教程 & 博客

  • 如何训练 GAN? 让 GAN 工作的提示和技巧

      【博客】https://github.com/soumith/ganhacks

  • NIPS 2016 教程:生成对抗网络

      【arXiv】https://arxiv.org/abs/1701.00160

  • 深度学习和 GAN 背后的直觉知识——一个基础理解

      【博客】https://blog.waya.ai/introduction-to-gans-a-boxing-match-b-w-neural-nets-b4e5319cc935

  • OpenAI——生成模型

      【博客】https://openai.com/blog/generative-models/

  • SimGANs——无监督学习的游戏规则颠覆者,无人车等

      【博客】https://blog.waya.ai/simgans-applied-to-autonomous-driving-5a8c6676e36b

  •   论文

      理论 & 机器学习

  • 生成对抗网络,逆向强化学习和 Energy-Based 模型之间的联系(A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models )

  • 可扩展对抗分类的通用训练框架(A General Retraining Framework for Scalable Adversarial Classification)

  • 对抗自编码器(Adversarial Autoencoders)

  • 对抗判别的领域适应(Adversarial Discriminative Domain Adaptation)

  • 对抗性 Generator-Encoder 网络(Adversarial Generator-Encoder Networks)

  • 对抗特征学习(Adversarial Feature Learning)

      【代码】https://github.com/wiseodd/generative-models

  • 对抗推理学习(Adversarially Learned Inference)

      【代码】https://github.com/wiseodd/generative-models

  • 结构化输出神经网络半监督训练的一种对抗正则化(An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks)

  • 联想式对抗网络(Associative Adversarial Networks)

  • b-GAN:生成对抗网络的一个新框架(b-GAN: New Framework of Generative Adversarial Networks)

      【代码】https://github.com/wiseodd/generative-models

  • 边界寻找生成对抗网络(Boundary-Seeking Generative Adversarial Networks)

      【代码】https://github.com/wiseodd/generative-models

  • 条件生成对抗网络(Conditional Generative Adversarial Nets)

      【代码】https://github.com/wiseodd/generative-models

  • 结合生成对抗网络和 Actor-Critic 方法(Connecting Generative Adversarial Networks and Actor-Critic Methods)

  • 描述符和生成网络的协同训练(Cooperative Training of Deor and Generator Networks)

  • Coupled Generative Adversarial Networks(CoGAN)

      【代码】https://github.com/wiseodd/generative-models

  • 基于能量模型的生成对抗网络(Energy-based Generative Adversarial Network)

      【代码】https://github.com/wiseodd/generative-models

  • 对抗样本的解释和利用(Explaining and Harnessing Adversarial Examples)

  • f-GAN:使用变分发散最小化训练生成式神经采样器(f-GAN: Training Generative Neural Samplers using Variational pergence Minimization)

  • Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

  • 用递归对抗网络乘车图像(Generating images with recurrent adversarial networks)

  • Generative Adversarial Nets with Labeled Data by Activation Maximization

  • 生成对抗网络(Generative Adversarial Networks)

      【代码】https://github.com/goodfeli/adversarial

      【代码】https://github.com/wiseodd/generative-models

  • 生成对抗并行化(Generative Adversarial Parallelization)

      【代码】https://github.com/wiseodd/generative-models

  • One Shot学习的生成性对抗残差成对网络(Generative Adversarial Residual Pairwise Networks for One Shot Learning)

  • 生成对抗结构化网络(Generative Adversarial Structured Networks)

  • 生成式矩匹配网络(Generative Moment Matching Networks)

      【代码】https://github.com/yujiali/gmmn

  • 训练GAN的改进技术(Improved Techniques for Training GANs)

      【代码】https://github.com/openai/improved-gan

  • 改善训练WGAN(Improved Training of Wasserstein GANs)

      【代码】https://github.com/wiseodd/generative-models

  • InfoGAN:通过信息最大化GAN学习可解释表示(InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets)

      【代码】https://github.com/wiseodd/generative-models

  • 翻转GAN的生成器(Inverting The Generator Of A Generative Adversarial Network)

  • 隐式生成模型里的学习(Learning in Implicit Generative Models)

  • 用GAN学习发现跨域关系(Learning to Discover Cross-Domain Relations with Generative Adversarial Networks)

      【代码】https://github.com/wiseodd/generative-models

  • 最小二乘生成对抗网络,LSGAN(Least Squares Generative Adversarial Networks)

      【代码】https://github.com/wiseodd/generative-models

  • LS-GAN,损失敏感GAN(Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities)

  • LR-GAN:用于图像生成的分层递归GAN(LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation)

  • MAGAN: Margin Adaptation for Generative Adversarial Networks

      【代码】https://github.com/wiseodd/generative-models

  • 最大似然增强的离散生成对抗网络(Maximum-Likelihood Augmented Discrete Generative Adversarial Networks)

  • 模式正则化GAN(Mode Regularized Generative Adversarial Networks)

      【代码】https://github.com/wiseodd/generative-models

  • Multi-Agent perse Generative Adversarial Networks

  • 生成对抗网络中Batch Normalization和Weight Normalization的影响(On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks)

  • 基于解码器的生成模型的定量分析(On the Quantitative Analysis of Decoder-Based Generative Models)

  • SeqGAN:策略渐变的序列生成对抗网络(SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient)

  • 深度网络的简单黑箱对抗干扰(Simple Black-Box Adversarial Perturbations for Deep Networks)

  • Stacked GAN(Stacked Generative Adversarial Networks)

  • 通过最大均值差异优化训练生成神经网络(Training generative neural networks via Maximum Mean Discrepancy optimization)

  • Triple Generative Adversarial Nets

  • Unrolled Generative Adversarial Networks

  • DCGAN无监督表示学习(Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)

      【代码】https://github.com/Newmu/dcgan_code

      【代码】https://github.com/pytorch/examples/tree/master/dcgan

      【代码】https://github.com/carpedm20/DCGAN-tensorflow

      【代码】https://github.com/jacobgil/keras-dcgan

  • Wasserstein GAN(WGAN)

      【代码】https://github.com/martinarjovsky/WassersteinGAN

      【代码】https://github.com/wiseodd/generative-models

  •   视觉应用

  • 用对抗网络检测恶性前列腺癌(Adversarial Networks for the Detection of Aggressive Prostate Cancer)

  • 条件对抗自编码器的年龄递进/回归(Age Progression / Regression by Conditional Adversarial Autoencoder)

  • ArtGAN:条件分类GAN的艺术作品合成(ArtGAN: Artwork Synthesis with Conditional Categorial GANs)

  • Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

  • 卷积人脸生成的条件GAN(Conditional generative adversarial nets for convolutional face generation)

  • 辅助分类器GAN的条件图像合成(Conditional Image Synthesis with Auxiliary Classifier GANs)

      【代码】https://github.com/wiseodd/generative-models

  • 使用对抗网络的Laplacian金字塔的深度生成图像模型(Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks)

      【代码】https://github.com/facebook/eyescream

      【博客】http://soumith.ch/eyescream/

  • Deep multi-scale video prediction beyond mean square error

      【代码】https://github.com/dyelax/Adversarial_Video_Generation

  • DualGAN:图像到图像翻译的无监督Dual学习(DualGAN: Unsupervised Dual Learning for Image-to-Image Translation)

      【代码】https://github.com/wiseodd/generative-models

  • 用循环神经网络做全分辨率图像压缩(Full Resolution Image Compression with Recurrent Neural Networks)

  • 生成以适应:使用GAN对齐域(Generate To Adapt: Aligning Domains using Generative Adversarial Networks)

  • 生成对抗文本到图像的合成(Generative Adversarial Text to Image Synthesis)

      【代码】https://github.com/paarthneekhara/text-to-image

  • 自然图像流形上的生成视觉操作(Generative Visual Manipulation on the Natural Image Manifold)

      【项目】http://www.eecs.berkeley.edu/~junyanz/projects/gvm/

      【视频】https://youtu.be/9c4z6YsBGQ0

      【代码】https://github.com/junyanz/iGAN

  • Image De-raining Using a Conditional Generative Adversarial Network

  • Image Generation and Editing with Variational Info Generative Adversarial Networks

  • 用条件对抗网络做 Image-to-Image 翻译(Image-to-Image Translation with Conditional Adversarial Networks)

      【代码】https://github.com/phillipi/pix2pix

  • 用GAN模仿驾驶员行为(Imitating Driver Behavior with Generative Adversarial Networks)

  • 可逆的条件GAN用于图像编辑(Invertible Conditional GANs for image editing)

  • 学习驱动模拟器(Learning a Driving Simulator)

  • 多视角GAN(Multi-view Generative Adversarial Networks)

  • 利用内省对抗网络编辑图片(Neural Photo Editing with Introspective Adversarial Networks)

  • 使用GAN生成照片级真实感的单一图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network)

  • Recurrent Topic-Transition GAN for Visual Paragraph Generation

  • RenderGAN:生成现实的标签数据(RenderGAN: Generating Realistic Labeled Data)

  • SeGAN: Segmenting and Generating the Invisible

  • 使用对抗网络做语义分割(Semantic Segmentation using Adversarial Networks)

  • 半隐性GAN:学习从特征生成和修改人脸图像(Semi-Latent GAN: Learning to generate and modify facial images from attributes)

  • TAC-GAN - 文本条件辅助分类器GAN(TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network)

  • 通过条件GAN实现多样化且自然的图像描述(Towards perse and Natural Image Deions via a Conditional GAN)

  • GAN 提高人的体外识别基线的未标记样本生成(Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro)

  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

  • 无监督异常检测,用GAN指导标记发现(Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery)

  • 无监督跨领域图像生成(Unsupervised Cross-Domain Image Generation)

  • WaterGAN:实现单目水下图像实时颜色校正的无监督生成网络(WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images)

  •   其他应用

  • 基于生成模型的文本分类的半监督学习方法(Adversarial Training Methods for Semi-Supervised Text Classification)

  • 学习在面对对抗性神经网络解密下维护沟通保密性(Learning to Protect Communications with Adversarial Neural Cryptography)

      【博客】http://t.cn/RJitWNw

  • MidiNet:利用 1D 和 2D条件实现符号域音乐生成的卷积生成网络(MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions)

  • 使用生成对抗网络重建三维多孔介质(Reconstruction of three-dimensional porous media using generative adversarial neural networks)

      【代码】https://github.com/LukasMosser/PorousMediaGan

  • Semi-supervised Learning of Compact Document Representations with Deep Networks

  • Steganographic GAN(Steganographic Generative Adversarial Networks)

  •   Humor

  • 停止 GAN 暴力:生成性非对抗网络(Stopping GAN Violence: Generative Unadversarial Networks)

  •   视频

  • Ian Goodfellow:生成对抗网络

      【视频】http://t.cn/RxxJF5A

  • Mark Chang:生成对抗网络教程

      【视频】http://t.cn/RXJOKK1

  •   代码

  • Cleverhans:一个对抗样本的机器学习库

      【代码】https://github.com/openai/cleverhans

      【博客】http://cleverhans.io/

  • 50行代码实现GAN(PyTorch)

      【代码】https://github.com/devnag/pytorch-generative-adversarial-networks

      【博客】https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

  • 生成模型集,e.g. GAN, VAE,用 Pytorch 和 TensorFlow 实现

      【代码】https://github.com/wiseodd/generative-models

  •   【进入新智元微信公众号,在对话框输入“170501”下载全部 89 篇论文】

      原文地址:https://github.com/nightrome/really-awesome-gan

    新智元招聘


    大家都爱看
    学界 | 伯克利与OpenAI整合强化学习与GAN:让智能体学习自动发现目标学界 | 伯克利与OpenAI整合强化学习与GAN:让智能体学习自动发现目标 到底什么是生成式对抗网络GAN?到底什么是生成式对抗网络GAN?
    查看更多热点新闻