首页 > 社会焦点 > 正文

【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

2017-03-26 编辑:

  【重要通知】【倒计时 2 天,点击“阅读原文”抢票新智元和行业领袖英特尔联合举办,中国 AI 2017 开年盛典启幕在即。新智元327技术峰会暨颁奖盛典现场一律凭活动行二维码入场,大会于3月27日 8:00 正式开始签到,8:50会议开始,现场座位紧张请提前签到入场。活动行在大会现场设有咨询席位,但提前换二维码节省签到时间。请团购注册的公司关注,务必提醒参会的同事们手机接收二维码,如果不清晰可以打印出来,现场在签到处换领大会嘉宾胸卡。大会将在腾讯科技、云栖社区和爱奇艺上同步直播,欢迎关注。

  【新智元导读】生成式对抗网络 GAN (Generative adversarial networks) 被Ian Goodfellow提出至今,目前已经成为人工智能学界一个热门的研究方向。本文是中科院自动化研究所王飞跃教授署名论文,他与所内研究员王坤峰、苟超、段艳杰、林懿伦以及明尼苏达大学的郑心湖共同详细解读了 GAN 的背景、理论与实现模型、应用领域(包括自动驾驶和语音)、优缺点及发展趋势之后, 讨论了 GAN 与平行智能的关系。

  3月27日的新智元 2017 年技术峰会上,王飞跃教授作为特邀嘉宾将参加本次峰会的 Panel 环节,就如何看待中国 AI学术界论文数量多,但大师级人物少的现状?人工智能被首次写入中国政府工作报告,但中国的AI开源生态还刚刚萌芽,在全球尚处边缘化地位,如何打造中国AI的主流生态等议题进行讨论。关于GAN 与平行智能的关系,你可以来现场问问他。

  本文2017年3月发表在《自动化学报》(第43卷,第三期)。

  引用格式 王坤峰 ,苟超 ,段艳杰 ,林懿伦 ,郑心湖,王飞跃 . 生成对抗网络GAN的研究与展望. 自动化学报, 2017,43(3): 321-332

  DOI 10.16383/j.aas.2017.y000003

  论文作者:王坤峰 ,苟超 ,段艳杰 ,林懿伦 ,郑心湖,王飞跃

  【摘要】 生成式对抗网络 GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向。 GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗学习的方式来训练。目的是估测数据样本 的潜在分布并生成新的数据样本。在图像和视觉计算、语音和语言处理、信息安全、棋类比赛等领域, GAN 正在被广泛研究,具有巨大的应用前景。本文概括了 GAN 的研究进展, 并进行展望。在总结了 GAN 的背景、理论与实现模型、应用领域、优缺点及发展趋势之后, 本文还讨论了 GAN 与平行智能的关系, 认为 GAN 可以深化平行系统的虚实互动、交互一体的理念, 特别是计算实验的思想, 为 ACP (Artificial societies, computational experiments, and parallel execution) 理论提供了十分具体和丰富的算法支持。

  关键词 生成式对抗网络,生成式模型,零和博弈,对抗学习,平行智能,ACP 方法

  生成式对抗网络 GAN (Generative adversarial networks) 是 Goodfellow 等[1] 在 2014 年提出的一种生成式模型. GAN 在结构上受博弈论中的二人零和博弈 (即二人的利益之和为零, 一方的所得正是另一方的所失) 的启发, 系统由一个生成器和一个判别器构成。生成器捕捉真实数据样本的潜在分布, 并生成新的数据样本; 判别器是一个二分类器, 判别输入是真实数据还是生成的样本. 生成器和判别器均[2]可以采用目前研究火热的深度神经网络. GAN 的优化过程是一个极小极大博弈 (Minimax game) 问 题, 优化目标是达到纳什均衡[3] , 使生成器估测到数据样本的分布。

  在当前的人工智能热潮下, GAN 的提出满足了 许多领域的研究和应用需求, 同时为这些领域注入了新的发展动力. GAN 已经成为人工智能学界一个热门的研究方向, 著名学者 LeCun 甚至将其称为“过去十年间机器学习领域最让人激动的点子”. 目前, 图像和视觉领域是对 GAN 研究和应用最广泛的一个领域, 已经可以生成数字、人脸等物体对象,构成各种逼真的室内外场景, 从分割图像恢复原图 像, 给黑白图像上色, 从物体轮廓恢复物体图像, 从 低分辨率图像生成高分辨率图像等[4]. 此外, GAN已经开始被应用到语音和语言处理[5?6]、电脑病毒 监测[7]、棋类比赛程序[8] 等问题的研究中。

  本文综述了生成式对抗网络 GAN 的最新研究 进展, 并对发展趋势进行展望. 第 1 节介绍 GAN 的 提出背景. 第 2 节描述 GAN 的理论与实现模型, 包 括 GNN 的基本原理、学习方法、衍生模型等. 第 3节列举GAN在图像和视觉、语音和语言、信息安全 等领域的典型应用. 第4节对 GAN 进行思考与展 望, 讨论 GAN 与平行智能, 特别是与计算实验的关 系. 最后, 第 5 节对本文进行总结。

  1. GAN 的提出背景

  本节介绍 GAN 的提出背景, 以便读者更好地理解 GAN 的研究进展和应用领域.

  1.1 人工智能的热潮

  近年来, 随着计算能力的提高和各行业数据量 的剧增, 人工智能取得了快速发展, 使得研究者对人 工智能的关注度和社会大众对人工智能的憧憬空前提升[2,9]. 学术界普遍认为人工智能分为两个阶段:感知阶段和认知阶段. 在感知阶段, 机器能够接收来 自外界的各种信号, 例如视觉信号、听觉信号等, 并 对此作出判断, 对应的研究领域有图像识别、语音识别等. 在认知阶段, 机器能够对世界的本质有一定的 理解, 不再是单纯、机械地做出判断。基于多年的研 究经验, 本文作者认为人工智能的表现层次包括判 断、生成、理解和创造及应用, 如图 1 所示. 一方面,这些层次相互联系相互促进; 另一方面, 各个层次之间又有很大的鸿沟, 有待新的研究突破.

  无论是普遍认为的人工智能两阶段还是本文作者总结的人工智能四个层次, 其中都涉及理解这个 环节. 然而, 理解无论对人类还是人工智能都是内 在的表现, 无法直接测量, 只能间接从其他方面推 测. 如何衡量人工智能的理解程度, 虽然没有定论但是著名学者 Feynman 有句名言 “What I cannot create, I do not understand. (不可造者, 未能知也.)” 这说明机器制造事物的能力从某种程度上取 决于机器对事物的理解. 而 GAN 作为典型的生成 式模型, 其生成器具有生成数据样本的能力. 这种 能力在一定程度上反映了它对事物的理解. 因此, GAN 有望加深人工智能的理解层面的研究.

  

【最详尽的GAN介绍】王飞跃等:生成式对抗网络 GAN 的研究进展与展望

  1.2 生成式模型的积累


大家都爱看
查看更多热点新闻