昨日“人机对决”的硝烟还未散尽,今天上午 9 点 30 分DeepMind的掌门人哈萨比斯就在乌镇发表了《 AlphaGo 研发介绍, AlphaGo 意味着什么?》的主题演讲,将“怪兽”AlphaGo背后的重大升级细节和盘托出。不得不说,在经历了几番和人类选手的比拼之后,人工智能的力量已经进化的了难以想象的层次。
除此以外,在这次的论坛上,AlphaGo的主要开发者大卫·席尔瓦(David Silver)和谷歌大脑(Google Brain)团队负责人杰夫·迪恩(Jeff Dean)同时进一步揭秘了脱胎换骨之后的全新AlphaGo。
据悉,相较于之前12层卷积神经网络的AlphaGo,此次出战的AlphaGo已经达到的40层神经网络,性能较上次和人类大战60回合的Master也有了增强,更是比李世石的那一版强了三子的优势。正是在这种不断自我训练的情况下,AlphaGo已经生成了一代强过一代的神经网络。
图丨DeepMind团队预测,Master版本比李世石版本提升了三子
如今的AlphaGo无论从哪个角度看都更像是一台独立的高性能秘密武器。凭借着十个谷歌自研的TPU,它摆脱了对外界的依赖;使用自己所积累的数据;更强大的策略网络和价值网络提高了的反应速度和判断的准确性……强化学习的优势在AlphaGo身上表现得淋漓尽致,并且还将结出更加丰硕的成果。
以下是DT君在现场的编辑整理后哈萨比斯今日主题演讲的内容精选:
我先简单介绍一下 DeepMind。2010 年,DeepMind 创立于英国伦敦,2014年我们加入 Google。我们想要做的就是攻克人工智能。
对于 DeepMind 而言,我们希望网络全世界的机器学习科学家,能够结合计算能力,尽快解决人工智能的问题。另外,DeepMind 为了更好的进行研发,创新了我们的组织方式。
可以说,Deep Mind的任务可以分两步走:
第一步是要从根本上了解智能是什么,然后用人工方法去创造它。接下来就是要通过这种智能去尝试解决其他所有问题。我们认为,AI会是人类历史上最重要的技术发明之一。
具体来说我们会怎么做?在DeepMind,我们常会提到要建立通用型学习系统。最核心的概念就是“学习”,我们开发的所有系统都有学习相关的内核,这种学习系统从实践经验和数据中学习,而不需要预先输入程序化的解决方案。
第二步是要解决AI的通用性问题。我们认为,单一系统或者算法组合并不能直接解决各种问题,更不用说以前没遇到过的问题。这种系统最好的例子就是人脑,我们从某一任务中学习,并相关经验应用于其他未遇到过的问题,即所谓的举一反三。而机器在这方面是有很大问题的,DeepMind就是想赋予机器这种能力。
打造这种通用型学习系统涉及到几项关键技术。首先是深度学习,即层叠的神经网络,这个大家都很熟悉了;然后是强化学习,即让机器自己学习,以达到最大化的收益。
我们将这种具有通用目标的学习系统称为通用型人工智能,这与目前所谓的人工智能是不一样的,因为目前的人工智能主要还是预先写入的程序而已。
实际上,打造通用型学习系统,最重要的是要学习。所有算法都会自动学习,更多的数据和更多的体验不依赖于预设。
通用型的强人工智能与弱人工智能不一样。最好的例子就是,在90年代末IBM开发的“深蓝”系统,击败了当时顶尖的国际象棋高手卡斯帕罗夫——这在当时是很大的成就,但“深蓝”终究是一套预先写入程序的系统,相当于一位顶级程序员在和卡斯帕罗夫对弈,这位程序员尝试揣摩卡斯帕罗夫脑子里在想什么,并把相应的对策全部编写到程序里。这个技术了不起,但它不能解答人工智能之路在哪,只是在执行预先写入的命令,而不是自己来学习、决策。
然而,人类的大脑学到新的知识后却可以举一反三,我们可以用习得的现有经验解决新的问题,这是机器所不擅长的。
所以说,与之前的相比,我们想要的是能够自我学习的系统,而这种系统需要在强化学习的框架下来开发。有必要先稍微解释一下到底什么是所谓的强化学习。
在人工智能系统中,有一个我们称之为Agent的主体,Agent发现它身处某种环境下,并需要完成某些任务。如果周围的环境是真是世界,Agent可能会是一个机器人;但如果周围环境是诸如游戏这类虚拟环境,Agent就可能是一个虚拟形象(Avatar)。
要完成某个任务,Agent会通过两种方式与环境互动。首先是传感器,DeepMind更多会使用视觉传感器让机器与环境互动,当然,如果你愿意,也可以使用语音、触觉等方式。所以这类Agent通常通过自己的观察来对环境建模。但是这里有个问题,真是环境通常是充满噪声、干扰、不完整的,所以需要Agent尽最大努力去预测周围到底是什么样的。
一旦这个环境模型建立,就要开始第二步了:如何在这个环境中做出最好的行为决策。当然,行为与环境间的互动可能是成功的,也可能是失败的,这写结果都会被实时纳入Agent的观察过程,这也就是强化学习的过程。
这两年来,AlphaGo团队专注于围棋项目。与象棋相比,围棋更加复杂。对于象棋来说,写一个评价函数是非常简单的。另外,围棋更需要直觉,伟大的旗手往往难以解释他们为什么下了这一步棋,象棋选手则可以给一个明确的答案,回答这么走的原因,有时候也许不尽如人意,但是起码选手心中是有清晰的计划的。
为什么围棋的评估方程式这么难?相比象棋,围棋是因为没有物质性的概念,每一个棋子是等值的,而象棋有由估值的高低的。第二,围棋是建设性的,围棋是空的,你需要填充棋盘。特殊位点的评估,期盼在你心中,不断摸索,围棋手是建设性的,一切情况不得而知,需要棋手预测未来,进行布局,而象棋往往讲究当下的时局。
另一个原因,一个棋子怎么走,一步输步步输,一发全身。围棋更具有直觉性,历史中我们觉得这是神的旨意,由灵感指导行为。
那么我们怎么写出这个方程式呢?策略网络……缩小范围……价值网络。我们曾经在《Nature》上发布了相关的论文,论文帮助一些国家和公司打造了他们自己版本的AlphaGo。
接下来,我们用比赛来测试更新的系统,比如上一次的李世石,昨天的柯洁,这两次比赛都引起了很大的关注。在和李世石的比赛中,AlphaGo赢了。但其实,我们十年磨一剑。胜利是很难的,也是很了不起,在AI领域更是这样,十年磨一剑是常事。
我们赢了,最重要的是我们激发了更多的灵感,AlphaGo打出了好局,和李的比赛中,第二局第37不起令人惊叹。这是专业人员都难以想象的,已经触及到下棋的直觉方面。
AlphaGo把围棋看做客观的艺术,每下一步旗子都会产生客观影响,而且它还能下得非常有创意。李世石在比赛中也受到了启发,他在第四局的第78着也很美妙,因此他赢了一局。
毫无疑问,AlphaGo对战李世石的影响很大,全世界28亿人在关注,35000多篇关于此的报道。西方世界开始更多地感受到围棋这种东方游戏的魅力,当时围棋的销量还涨了10倍。我们很乐意看到西方世界也学习这种游戏。而李世石也有新的发现,他在赛后表示,和狗比赛是其人生最美的体验,狗也为创造了围棋的新范式,李表示他对围棋的兴趣更大了,我开心他这么说。
回到直觉和创意上。什么是直觉?人们通过各种体验获得经验,这是无法继承,人们接受测试来检验他们直觉。AlphaGo已经能模仿直觉。而创造力上,它的一个定义是,整合新的知并创造新的点子或知识,阿狗显然是有创造力,但这种创造力仍然仅局限于围棋。
在过去一年中,DeepMind不断打造AlphaGo,希望能解决科学问题并弥补它的知识空白,我们还将继续完善它。之后,Master出现了,我们在今年一月对他进行上线测试,他取得了60连胜,还诞生了很好的点子,它的棋谱被全世界的棋手们研究。例如,AlphaGo打了右下角三三目,这种举措在之前是不可想象的。
柯洁也说,人类3000年围棋历史,至今没有一人曾经接近过到围棋真理的彼岸。但是,人和AI的结合可以解决这个问题。古力也说,人类和AI共同探索围棋世界的脚步开始了。
转载请注明出处。