麦肯锡万字报告:自动驾驶技术革命的脉络、难题与演进(3)
2017-05-28 编辑:
毫米波雷达 + 超声波雷达 + 摄像头(Radar, Sonar and Cameras):为了感知环境中的车辆和其他物体,自动驾驶汽车将使用毫米波雷达、超声波雷达及摄像系统,该技术路线并不能在特别高的精度水平上(on a deeply granular level)对环境进行评估,但只需要较少的计算资源;
上述传感器 + 激光雷达(Lidar Augmentation):第2种技术路线在毫米波雷达和摄像系统的基础上,还使用了激光雷达。它要求配置更强大的计算能力,但在各种环境中的鲁棒性更好,尤其是在拥挤且交通流量很大的环境。
专家们相信第2种技术路线将最终成为许多未来自动驾驶汽车产业参与者们所青睐的方法,这可以从许多汽车制造商、一级供应商及科技公司目前所使用的测试车辆上得到间接验证,这些汽车大都配置了激光雷达。
测绘技术(Mapping):目前自动驾驶汽车技术开发者们正在使用技术路线有以下两种:
精细的高清地图(Granular, High-Definition Maps):为了构建高精地图,企业经常使用配置有激光雷达和摄像头的测绘车辆,它们沿着目标路线行进,以创建含有周围环境360度信息(包括深度信息)的3D高精地图;
特征测绘(Feature Mapping):这种技术路线不一定需要配置激光雷达,而可以使用相机(通常与雷达相结合)仅绘制某些能够帮助实现车辆导航的特定的道路特征。例如,捕捉车道线、道路及交通标志、桥梁和其它相对靠近道路的物体。虽然这种技术路线只提供了较低的测绘精度,但处理和更新起来更容易。
捕获的数据将被(手动地)进行分析以产生语义数据,例如,具有时间限制的车速指示牌。通过使用有人驾驶或自动驾驶且每辆车都配置有连续收集与更新地图所需的遥感器组件的车队,地图制造商可以改进上述两种技术路线。
定位技术(Localization):通过识别出车辆在其环境中所处的确切位置,定位技术是自动驾驶汽车选定向哪里走并决定怎么走的关键先决条件,目前有下列几类常见的技术路线:
高精地图(HD Mapping):该方法使用车载传感器(包括GPS)来将自动驾驶汽车感知到的环境与相应的已有的高精地图进行比对,提供了车辆可在高精度水平上确定其位置(包括车道信息)及正朝着哪个方向的参照点。
无高精地图辅助的GPS定位(GPS Localization without HD Maps):此种技术路线依赖于GPS进行近似定位,然后使用自动驾驶汽车的传感器来监视其环境中的变化以改善其定位信息。例如,此类系统会将GPS的定位数据与车载摄像机捕获的图像进行结合,通过逐帧的比对分析(frame-by-frame comparative analysis)来降低GPS信号的误差范围。GPS的在水平方向上定位的95%置信区间约为8米,相当于正常路面的宽度。
需要指出的是,上述两种技术路线还严重依赖于惯性导航系统(Inertial Navigation Systems,IHS)和测距数据(Odometry Data)。经验表明,通常情况下第1种路线的鲁棒性更好,能够实现更精确的定位,而第2种路线在操作上更容易实现,因为并不需要高精地图。鉴于两者之间的在精度上差异,设计人员可以在车辆的精确定位信息对于导航并不是必须的场景下(例如,农村和人口较少的道路)使用第2种方法。
决策
全自动驾驶汽车在行驶的每一英里路程中需要做出成千上万个决定,而且它必须以非常高的准确率长期可靠地运行。目前,自动驾驶汽车的设计者们主要使用以下几种方法来确保车辆行驶在正确的路线上:
神经网络(Neural Networks):为了确定具体的场景并做出适当的决策,今天自动驾驶汽车的决策系统主要采用神经网络,然而,这些网络的复杂性质可能使得难以理解系统做出某些决定的根本原因或逻辑。
基于规则的决策(Rule-based Decision Making):工程师想出所有可能的“if-then规则”的组合,然后在用基于规则的技术路线对汽车的决策系统进行编程,但此种路线需要花费大量的时间和精力并且可能无法涵盖到每一个潜在的场景,这些都使得它在实际应用时并不可行。
混合路线(Hybrid Approach):许多专家认为将神经网络和基于规则的编程方法相结合的技术路线是最佳的解决方案,开发人员可以通过为每一个被中央集权式神经网络所连接的各独立进程引入特定的冗余神经网络来解决神经网络的固有复杂性(Developers can resolve the inherent complexity of neural networks by introducing redundancy—specific neural networks for inpidual processes connected by a centralized neural network),此时“if-then规则”可以对其进行优势互补。
目前,结合统计推理模型的混合路线是最流行的技术路线
测试与验证
整个汽车行业在汽车测试与验证技术方面拥有丰富的经验,以下是用于开发自动驾驶汽车的典型方法:
蛮力(Brute Force):工程师让汽车行驶数百万英里,以确定所设计的系统是否安全并按预期运行,该方法的困难在于所必须累积的测试里程数,这可能需要花费掉大量的时间。研究表明,自动驾驶汽车将需要大约2.75亿英里的行驶里程来证明,在95%置信度的条件下,他们设计的自动驾驶汽车的故障率为每1亿英里造成1.09起交通死亡事故,该数据相当于2013年美国的由人为原因所造成的交通死亡率。当然,为了表现出比人类更好的性能,自动驾驶汽车所需测试里程需达到数十亿英里。
据兰德公司(Rand Corporation)研究员尼迪-卡拉和苏珊-帕多克估计,如果100辆自动驾驶汽车每天运行24小时,每年运行365天,以平均25英里/时(约合40公里/时)的速度行驶,则需要十多年时间才能积累2.75亿英里测试里程数。
软件在环或模型在环的仿真(Software-In-the-Loop (SiL) or Model-in-the-Loop (MiL) Simulations):另一种更可行的方法将现实世界的测试与仿真相结合,这可以大大减少汽车行业也已熟悉且必须完成的测试里程数,在仿真所构建的各种场景中,通过算法控制车辆进行相应的应对来证明所设计的系统确实可以在各种场景下做出正确的决定。
硬件在环的仿真(hardware-in-the-Loop,HiL):为了验证真实硬件的运行情况,HiL仿真可以对其进行测试,并将预先记录的传感器数据提供给系统,此种技术路线降低了车辆测试和验证的成本,并增加研发人员了对其设计的系统的信心。
最终,企业们可能会实施一种混合路线,应用上述所有方法,以期在最短的时间内实现所需的置信水平。
加速自动驾驶汽车的研发及部署进程
综上所示,虽然目前的评估表明,大规模引入全自动驾驶汽车可能还需要10多年的时间,整个行业的参与者仍然可以通过多种方法来压缩这一时间框架。