首页 > 社会焦点 > 正文

在AlphaGo挑战柯洁之前,这8件事帮我们重新认识它的主人DeepMind

2017-05-23 编辑:

  在AlphaGo挑战柯洁之前,这8件事帮我们重新认识它的主人DeepMind

  今日,两次出手都让吃瓜群众大惊失色的“AlphaGo”又要杀回来了,这次对战的对手将是中国棋手柯洁,其意义对中国观众来说当然非同小可。加之酝酿已久的“终极决战”和高达150万美金的史上最高围棋赛奖金,这场“捍卫人类尊严”的大赛必定万众瞩目。

  但相比于棋盘内的胜败,我们却更希望在这时候聊一下AlphaGo的创造者,著名人工智能企业DeepMind。

  对于大部分人来说,常识中AlphaGo是由谷歌制造。但事实上,DeepMind虽然在14年就被谷歌收购。但总部和项目始终继续保留在伦敦,人员也对外保持着高度的神秘性。另一方面,即使对DeepMind有了解的人,也更多的是知道它的创始人戴密斯·哈萨比斯(Demis Hassabis)是一位少年天才,4岁下国际象棋16岁进入剑桥等等。但DeepMind作为一家创业企业的规划、产品序列和目标实施情况,好像总是隐藏在一些面纱之后。

  从目前消息来看,谷歌AI与DeepMind依旧保持着高度的相互独立属性。虽然有战略和技术上的结合,但谷歌AI的重点推进工程列表中可说是完全不见DeepMind的踪影。

  而AlphaGo作为DeepMind的核心创造物之一,绝不仅是为了挑战人类围棋界而生。作为核心领域技术的关键载体,承接着整个公司战略的上下衔接。

  因此,通过DeepMind做了什么,来重新认识一下这家被谷歌大脑专家称为“AI实力世界第一”的公司,可以帮助我们更好的理解AlphaGo及其背后的更大野心。

  我们通过8件DeepMind所做的关键动作来梳理这家公司的实力与目标,希望在棋盘的决胜以外,提供给你一点新的思考。

  一、一鸣惊人的游戏系统

  DeepMind的创始人是棋类和电子游戏高手,而这家公司迈出的第一步就与游戏有关。

  2013年,当时名不见经传的在DeepMind发表了一篇论文,内容是他们自己开发的AI游戏系统。论文中描述的计算网络并不是为了游戏而服务,反而是让一个AI系统自己去玩游戏。

  神奇的是,DeepMind的游戏系统可以在完全没有接触的前提下,通过对游戏的自我学习,自动的玩一系列初级电视游戏。

  这个系统可以通过屏幕上面的图像和游戏中的分数是否上升下降,从而做出选择性的动作。

  虽然这个行为对人来来说难度不大,但对于机器学习来说却意义惊人。因为它涉及架设任务、建立人工精神网络、建立深度学习模型和完善学习过程几个关键部分,并且需要大量的图形处理单来辅助。

  这款“玩儿出来”的AI程序,最终帮助DeepMind登上了《自然》。随后开始受到各大互联网巨头的关注,并成功在一系列拉锯战后,被谷歌以据说高达6亿美金的代价收购。更可怕的是,这还被称为谷歌有史以来最成功的收购案。

  从初出茅庐的这件作品,可以看出DeepMind的几个特点。首先是擅长多种复杂技术的集成,其次对于AI应用有远超于业界水准的解决能力。而其喜欢游戏、热爱人机对决的基因特质,也在一开始就暴露无遗。

  二、给AI上3D游戏课:开源DeepMind Lab

  2016年底,DeepMind将其核心深度学习平台之一“DeepMind Lab”进行开源,供研究人员和开发者使用。

  区别于以往的深度学习开源平台,DeepMind Lab的特殊之处在于,它其实是一套专门给AI玩的3D游戏。

  就像人类玩的第一人称射击游戏一样,这套开源程序可以设计多重复杂的环境架构,专门用来训练人工智能和机器学习系统。用于训练人工智能在大型环境、部分可视环境,以及视觉多样化条件下学会执行复杂任务。

  DeepMind Lab据说是在《雷神之锤3》的基础上演变而来的,有比较强的延展性和适用性。可以让适用人员自行设计关卡和环境效果,来针对性训练出AI不同的判别与处理机制。

  相比于针对数据样本的机器学习系统,DeepMind开源的体系可以专注于AI在实际环境中进行视觉+感知的交互。这对于AI行业来说可谓是打开了巨大的脑洞,尤其对于无人驾驶、AR、地图导航、机器人记忆等领域的研究与创业者来说,可谓是福音。

  从这套灵感依旧来源于游戏的系统中,不难看出DeepMind一个特点是非常重视AI与人类高度贴合的研究。目标指向把人类的感知与精神思维方式移植到机器当中去,而且他们还鼓励其他人一同在这个方向尝试。

  三、人脑模式与经典计算机合体:可微分神经计算机

  另一个值得关注的动作,是2016年底DeepMind公布了他们打造的一台“可微分神经计算机”(DNC)。

  DNC的特点,是结合了精神网络的运作原理和经典计算机的运算能力和外部储存能力。简单来说,其解决方案就是将神经计算机的本体:以人类大脑为生物网络蓝本设置的精神网络,与可读写的外部存储器相分离,架设双层的处理与运算结构。

  这样打造的运算系统,核心特征是解决了神经网络实际运作当中的机器记忆问题。做出了一台又能像人类一样想,又能像计算机一样高速运算、记忆数据的机器。在发布的论文中,这台计算机可以规划相距甚远的地铁站间的最佳路线,弄清楚复杂的亲戚关系——尤其这些都是在没有先验数据的前提下。

  整合多元能力,对算法进行创意性的解放,在这台计算机当中展现的淋漓尽致。虽然原理听起来蛮简单,但实际运用到的解决方案却非常复杂,设计多个领域的协同。

  四、开发用于《星际争霸2》的人工智能训练环境

  2016年的暴雪嘉年华上,DeepMind宣布将于暴雪合作,打造一个专门玩《星际争霸2》的AI系统。这台系统会像人类一样去思考和决策,并希望复制AlphaGo的奇迹,最终打败所有人类高手。

  这里不禁要怀疑,这家公司到底是有多爱玩游戏。

  但事实却是如此,《星际争霸2》这种完全动态的游戏环境当中,人类选手对大势、时机、环境的处置始终都是高于电脑系统的。

  围棋的问题是运算量巨大,而这类策略游戏的问题是变化性太强,都是人工智能面对的核心问题。

  显然通过挑战人类擅长领域来做PR、讲故事、推产品,是DeepMind的拿手好戏。

  五、最精准的语音生成系统WaveNet

  在玩游戏之余,DeepMind也做点大家都在做的“正经事”。

  比如近两年,DeepMind先后公布了其在图像生成和语音生成领域的成果。比如16年公布的语音生成系统WaveNet,号称将计算机输出音频与人类自然语音差距缩小了50%。至少根据亲身尝试者的说法,这一系统比谷歌和苹果的语音生成系统都听起来自然流畅许多。

  在AlphaGo挑战柯洁之前,这8件事帮我们重新认识它的主人DeepMind

  (波形原理合成声音的WaveNet)

  WaveNet的优势,是通过原始的波形合成了近似真人的语音,而不是将语音样本进行逐字逐句的拼接。

  这让未来机器的声音可能更加接近人来,想想也是细思恐极的一件事。

  六、医疗应用计划DeepMind Health


大家都爱看
查看更多热点新闻