首页 > 社会焦点 > 正文

技术大咖教你用TensorFlow为图片添加字幕(2)

2017-05-13 编辑:

  图3中,{s0, s1, …, sN}表示我们试着去预测的字幕词汇,{wes0, wes1, …, wesN-1}是每个词的词向量。LSTM的输出{p1, p2, …, pN}是这个模型产生的句子里下一个词的概率分布。模型的训练目标是最小化对所有的词概率取对数后求和的负值。

  def build_model(self):

  # declaring the placeholders for our extracted image feature vectors, our caption, and our mask

  # (describes how long our caption is with an array of 0/1 values of length `maxlen`

  img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in])

  caption_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps])

  mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps])

  # getting an initial LSTM embedding from our image_imbedding

  image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias

  # setting initial state of our LSTM

  state = self.lstm.zero_state(self.batch_size, dtype=tf.float32)

  total_ loss = 0.0

  with tf.variable_scope(“RNN”):

  for i in range(self.n_lstm_steps):

  if i > 0:

  #if this isn’t the first iteration of our LSTM we need to get the word_embedding corresponding

  # to the (i-1)th word in our caption

  with tf.device(“/cpu:0”):

  current_embedding = tf.nn.embedding_lookup(self.word_embedding, caption_placeholder[:,i-1]) + self.embedding_bias

  else:

  #if this is the first iteration of our LSTM we utilize the embedded image as our input

  current_embedding = image_embedding

  if i > 0:

  # allows us to reuse the LSTM tensor variable on each iteration

  tf.get_variable_scope().reuse_variables()

  out, state = self.lstm(current_embedding, state)

  print (out,self.word_encoding,self.word_encoding_bias)

  if i > 0:

  #get the one-hot representation of the next word in our caption

  labels = tf.expand_dims(caption_placeholder[:, i], 1)

  ix_range=tf.range(0, self.batch_size, 1)

  ixs = tf.expand_dims(ix_range, 1)

  concat = tf.concat([ixs, labels],1)

  onehot = tf.sparse_to_dense(

  concat, tf.stack([self.batch_size, self.n_words]), 1.0, 0.0)

  #perform a softmax classification to generate the next word in the caption

  logit = tf.matmul(out, self.word_encoding) + self.word_encoding_bias

  xentropy = tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=onehot)

  xentropy = xentropy * mask[:,i]

  loss = tf.reduce_sum(xentropy)

  total_loss += loss

  total_loss = total_loss / tf.reduce_sum(mask[:,1:])

  return total_loss, img, caption_placeholder, mask

  使用推断来生成字幕

  完成训练后,我们就获得了一个在给定图片和所有的前置词汇的前提下,可以给出字幕里下一个词概率的模型。那么我们怎么用这个模型来生成字幕?

  最简单的方法就是把一张图片作为输入,循环输出下一个概率最大的词,由此生成一个字幕。

  def build_generator(self, maxlen, batchsize=1):

  #same setup as `build_model` function

  img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in])

  image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias

  state = self.lstm.zero_state(batchsize,dtype=tf.float32)

  #declare list to hold the words of our generated captions

  all_words = []

  print (state,image_embedding,img)

  with tf.variable_scope(“RNN”):

  # in the first iteration we have no previous word, so we directly pass in the image embedding

  # and set the `previous_word` to the embedding of the start token ([0]) for the future iterations

  output, state = self.lstm(image_embedding, state)

  previous_word = tf.nn.embedding_lookup(self.word_embedding, [0]) + self.embedding_bias

  for i in range(maxlen):

  tf.get_variable_scope().reuse_variables()

  out, state = self.lstm(previous_word, state)

  # get a one-hot word encoding from the output of the LSTM

  logit = tf.matmul(out, self.word_encoding) + self.word_encoding_bias

  best_word = tf.argmax(logit, 1)

  with tf.device(“/cpu:0”):

  # get the embedding of the best_word to use as input to the next iteration of our LSTM

  previous_word = tf.nn.embedding_lookup(self.word_embedding, best_word)

  previous_word += self.embedding_bias

  all_words.append(best_word)

  return img, all_words

  很多情况下,这个方法都能用。但是“贪婪”地使用下一个概率最大的词可能并不能产生总体上最合适的字幕。

  规避这个问题的一个可行的方法就是“束搜索(Beam Search)”。这个算法通过递归的方法在最多长度为t的句子里寻找k个最好的候选者来生成长度为t+1的句子,且每次循环都仅仅保留最好的那k个结果。这样就可以去探索一个更大的最佳的字幕空间,同时还能让推断在可控的计算规模内。在下图的例子里,算法维护了在每个垂直时间步骤里的一系列k=2的候选句子(用粗体字表示)。

  技术大咖教你用TensorFlow为图片添加字幕

  图4 来源:Daniel Ricciardelli

  局限和讨论

  神经图片字幕生成器给出了一个有用的框架,能学习从图片到人能理解的图片字幕间的映射。通过训练大量的图片-字幕对,这个模型学会提取从视觉特征到相关语义信息的关系。


大家都爱看
查看更多热点新闻