业界 | 谷歌开源深度学习街景文字识别模型:让地图随世界实时更新(2)
2017-05-06 编辑:
尽管没有从图片名称中获取任何有关真实地址的信息,系统还是识别出了商户名「Zelina Pneus」。模型也没有被商户名旁边的轮胎品牌(普利司通)所迷惑。
将超过 800 亿张街景图使用这一模型处理是一个十分耗费计算能力的任务。对此,谷歌 Ground Truth 团队使用了新研发的 TPU,极大地解决了计算机资源的耗费。
人们依赖于谷歌地图的协助,而让地图随着城市、道路与商业区域的成长而同步更新仍然是一个非常有挑战性的任务。谷歌 Ground Truth 团队将会继续努力,将更多机器学习技术带给谷歌地图的用户。
论文:Attention-based Extraction of Structured Information from Street View Imagery
论文链接:https://arxiv.org/abs/1704.03549
我们提供了一个神经网络模型——基于 CNN、RNN 和一种全新的注意机制,它在 FSNS 数据集挑战中达到了 84.2% 的准确率,大大超过了此前最好的模型(Smith, 2016;准确率 72.46%)此外,新的模型比旧模型更加简单,也更具通用性。为了展示新模型的能力,我们让它在更具挑战性的谷歌街景图数据集中读取商户名。最后,我们研究了在不同 CNN 深度的情况下速度/准确性的变化趋势,我们发现更深并不一定意味着更好(在准确性和速度上都是这样)。我们的最终模型简单、快速而且准确,可以在具有挑战性的真实世界环境中应用于多种不同任务。
原文链接:https://research.googleblog.com/2017/05/updating-google-maps-with-deep-learning.html
↓↓↓
相关阅读:
相关推荐: