观点 | 用几何学提升深度学习模型性能,是计算机视觉研究的未来(2)
2017-05-01 编辑:
2.用立体视觉预测深度
第二个示例是立体视觉,即以双目视觉估测深度。我曾有幸参去研究这个问题——在世界最先进的无人机上工作,与 Skydio 度过了一段美好的盛夏。
立体算法通常用于估测物体在一对整齐立体图像之间的水平位置差异,即视差,其与相应像素位置的场景深度成反比。因此它在本质上能被简化为一个匹配问题——找到左右图像中物体之间的对应关系,并且ni ke yi计算深度。
立体中性能最高的算法主要使用了深度学习,但仅限于构建匹配的功能。生产深度估测所需的匹配以及正规化步骤在很大程度上仍然是人工完成的。
我们提出了GC-Net 架构,但此次着重的是问题的基础几何。众所周知,在立体中我们可以在 1-D 视差线上通过成本量的形成来估测差异。本文的创新性在于,它展示了如何以可微分的方式将成本量的几何阐述为回归模型。本文还具有更多细节。
这是一篇关于 GC-Net 架构的概述,它运用几何的清晰表征来预测立体深度。
结论
我认为本文传达的关键信息是:
了解解决计算机视觉问题的经典方法是值得的(尤其你具有机器学习或数据科学背景)。
若能将架构结构化以利用问题的几何属性,则使用深度学习来研究复杂表征便会更加容易与有效。
本文为机器之心编译,转载请联系本公众号获得授权。
?------------------------------------------------
加入机器之心(全职记者/实习生):hr@jiqizhixin.com
投稿或寻求报道:editor@jiqizhixin.com
广告&商务合作:bd@jiqizhixin.com
相关阅读:
相关推荐: