神经网络:比原来更容易学习了
2017-04-30 编辑:
作者:Steven Dufresne
翻译:雁惊寒
随着黑客、学生、研究人员以及企业数量的增加,神经网络越来越流行。最近一次复苏是在80、90年代,当时几乎没有网络,也没有神经网络相关的工具。本次复苏始于2006年左右。从一个黑客的角度来看,在那个时候都有哪些可用的工具和资源?现在又有哪些?我们对将来的期望又是怎么样的呢?对我个人来说,树莓派上的GPU正是我所期盼的。
80、90年代
阅读本文的年轻人可能想知道,在互联网没有发明之前,我们这些老家伙是如何接触到新知识的。其实,纸质杂志在当时起到了相当大的作用。比如,《科学美国人》杂志在1992年9月的心灵与大脑特刊便让我第一次接触到了神经网络,既是在生物学上,也是在人工智能学上。
在当时,你既可以自己从头编写神经网络程序,也可以从其他地方订购一套包含源代码的软盘。我就曾经在《科学美国人》杂志的《美国科学家》专栏订购了这么一套软盘。当然,你也可以购买一套能够开发低级别的、复杂的数学神经网络开发库。比如,在多伦多大学,就有一个名叫Xerion的免费的模拟器。
如果你经常关注书店里科学类书刊的话,你有时候也会发现这方面的书籍,最经典的就是曾经出版过两卷的《并行分布式处理探索》,作者是Rumelhart、 McClelland等人。我最喜欢的一本书是《神经计算与自组织映射导论》,如果你对利用神经网络来控制机械臂感兴趣,这本书对你来说将会受益匪浅。
当然,你也可以参加一些短期的课程和会议。我在1994年曾经参加了一个为期两天的免费会议,这个会议最早是由Geoffrey Hinton主办的,后来改由多伦多大学主办。这个会议无论是在当时,还是在现在,都是神经网络领域的领导者。当时被誉为最好的年度会议是神经信息处理系统会议,它在当今仍然很受欢迎。
最后,我把为了发布论文而开发的神经网络程序整理了一遍。同时,我把所有的会议论文、课程讲义、复印的文章和手写的笔记统统摞了起来,足足达到了3英尺厚。
神经网络在经历了80、90年代的复苏后,又逐渐变得相对低调起来。从整个世界来看,除了对于个别研究团队,它已经变得不再重要。伴随着缓慢的改进以及一些小小的突破,神经网络始终保持着很低调。直到大概2006年左右,它又在世界范围内引发了一场大爆炸。
现在
现在我们来看一下神经网络工具得到重大突破的一些地方:
超过了三层甚至四层深度的新的训练网络技术,称之为深层神经网络
通过使用GPU(图像处理单元)来加速训练
包含大量样本的训练数据的有效性
现在有非常多的神经网络框架,他们使用了各种不同的授权协议,允许用户免费下载。其中很多还是开源框架。大部分的流行框架允许你在GPU上运行神经网络,并且支持大多数的神经网络算法。
下文将介绍一些流行的框架,他们都支持GPU,除了模糊神经网络。
TensorFlow
开发语言:Python,C++
TensorFlow是Google公司推出的最新的神经网络框架,它专门为分布式而设计。作为一个底层框架,虽然有着非常大的灵活性,但是也比高级框架(例如Keras和TFLearn,下文会有介绍)拥有更陡的学习曲线。目前,Google正在开发Keras集成在TensorFlow中的版本。
推荐Hackaday网站上的两篇文章“能识别锤子和啤酒瓶的机器人”和“TensorFlow入门”一睹TensorFlow的风采。
Theano
开发语言:Python
这是一款用来做多维矩阵高效数值计算的开源库。它出自蒙特利尔大学,可运行在Windows、Linux和OS X上。Theano发布于2009年,已经存在了很长时间。
Caffe
开发语言:命令行, Python, MATLAB
Caffe是一款由伯克利人工智能研究所和社区贡献者共同开发的开源库。在Caffe中,你可以使用文本文件来定义模型,然后通过命令行工具来进行处理。Caffe同时也有Python和MATLAB接口。例如,首先使用文本文件定义模型,然后在另外一个文本文件中给出详细的训练方法,然后通过命令行工具读入这两个文件,这样就能开始训练神经网络了。最后,你可以使用Python程序来调用这个已经训练好的神经网络来实现一些功能了,比如说把图片进行分类。
CNTK
开发语言:Python, C++, C#
这是微软的认知开发包(CNTK),可运行在Windows和Linux上。微软目前正在开发一个内部使用Keras的版本。
Keras
开发语言:Python
这个库以TensorFlow或者Theano作为底层,这样可以使其用起来更加简单。Keras同时也有支持CNTK的计划。目前,把Keras融入到TensorFlow的工作正在进行中,而以后就会出现一个仅支持TensorFlow的独立的版本。
TF Learn
开发语言:Python
跟Keras一样,是一个基于TensorFlow的高级别的库。
FANN
开发语言:支持超过15种语言,但不支持GPU
这是一个使用C语言开发的高级别的开源库,仅可用于完全连接和稀疏连接的神经网络。然而,FANN却已经流行了很多年,甚至已经包含在一些Linux发行版中。Hackaday最近的一篇“通过强化学习来让机器人学习走路”中提到了关于FANN的使用。
Torch
开发语言:Lua
一款使用C语言开发的开源库。特别要注意的一点,在Rorch官网上特别注明了该框架支持嵌入式设备,例如iOS、Android和FPGA。
PyTorch
开发语言:Python
PyTorch相对来说还是比较新的,在其官网上注明了目前还属于早起的测试版,但似乎现在已经吸引了很多人的目光。它运行在Linux和OS X上,并以Torch作为底层。
你应该选择哪一个框架呢?除编程语言或者操作系统对你来说是影响选择的一个大问题,如果你觉得数学太难,或者不想深入地挖掘神经网络的细节,那么尽量选择一个高级的框架吧。在这种情况下,请远离TensorFlow,因为相对于Kera、TFLearn或者其他高级框架,你必须去学习更多的API函数。该框架在强调自身具有强大数学功能的同时,也需要你去花费更多的精力来创建神经网络。另外一个影响你选择框架的因素是你是否需要做基础研究,一个高级框架可能不会让你能接触到内部逻辑。
在线服务
你是否正在寻找一种可用的神经网络库,但你又不想花费太多的时间去学习呢?这里有一些互联网在线服务可以满足你的要求。