首页 > 社会焦点 > 正文

深度 | 用于图像分割的卷积神经网络:从R(4)

2017-04-25 编辑:

  深度 | 用于图像分割的卷积神经网络:从R

我们如何准确地将原始图像的相关区域映射到特征图上?

想象一下,我们有一个尺寸大小为 128x128 的图像和大小为 25x25 的特征图。想象一下,我们想要的是与原始图像中左上方 15x15 像素对应的区域(见上文)。我们如何从特征图选择这些像素?

我们知道原始图像中的每个像素对应于原始图像中的?25/128 像素。要从原始图像中选择 15 像素,我们只需选择 15 * 25/128?=2.93 像素。

在 RoIPool,我们会舍弃一些,只选择 2 个像素,导致轻微的错位。然而,在 RoIAlign,我们避免了这样的舍弃。相反,我们使用双线性插值来准确得到 2.93 像素的内容。这很大程度上,让我们避免了由 RoIPool 造成的错位。

一旦这些掩码生成,Mask R-CNN 简单地将它们与来自 Faster R-CNN 的分类和边界框组合,以产生如此惊人的精确分割:

  深度 | 用于图像分割的卷积神经网络:从R

Mask R-CNN 也能对图像中的目标进行分割和分类.

展望

在过去短短 3 年里,我们看到研究界如何从 Krizhevsky 等人最初结果发展为 R-CNN,最后一路成为 Mask R-CNN 的强大结果。单独来看,像 MASK R-CNN 这样的结果似乎是无法达到的惊人飞跃。然而,通过这篇文章,我希望你们认识到,通过多年的辛勤工作和协作,这些进步实际上是直观的且渐进的改进之路。R-CNN、Fast R-CNN、Faster R-CNN 和最终的 Mask R-CNN 提出的每个想法并不一定是跨越式发展,但是它们的总和却带来了非常显著的效果,帮助我们向人类水平的视觉能力又前进了几步。

特别令我兴奋的是,R-CNN 和 Mask R-CNN 间隔只有三年!随着持续的资金、关注和支持,计算机视觉在未来三年会有怎样的发展?我们非常期待。

  原文链接:https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

  本文为机器之心编译,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):hr@jiqizhixin.com

投稿或寻求报道:editor@jiqizhixin.com

广告&商务合作:bd@jiqizhixin.com

相关阅读:

  • cnn评出的最美味的美食100道
  • 深度卷积网络的图像超分辨
  • cnn提取图像深度信息
  • 盲卷积法还原模糊图像
  • cnn图像处理案例
  • 川普怒怼cnn记者
  • cnn卷积 人脸检测
  • crf用于图像分割
  • 图像处理卷积的作用
  • 基于cnn的图像分类
  • cnn卷积核大小的选择
  • meanshift图像分割流程图
  • 相关推荐:

  • 华为史上最美操作系统,你绝对不能错过的EMUI5.0
  • 国产操作系统典范:deepin操作系统
  • 娱乐办公两不误!这个笔记本能把屏幕拔下来写字
  • 斗鱼响应新规加强监管,坚持打造优质精品直播
  • SpaceX 火箭爆炸原因确定:液态氧过冷成了固态
  • 华为Mate9中国版真机秀 你绝对没发现它有两种版本
  • 99%的人都不知道的微信高效使用术?
  • 乐视网一周蒸发88亿元 贾跃亭反思节奏发展过快
  • 似乎已经战胜传统渠道的小米 今年为什么被OPPO、vivo 打败?
  • 优雅商务风,性能一鸣惊人—TCL 950体验评测

  • 大家都爱看
    案例 | 抑郁症、精神分裂,初中生家境优渥,父母为何不让吃药案例 | 抑郁症、精神分裂,初中生家境优渥,父母为何不让吃药 实录 |12名女大学生被侵犯,色魔竟然是个老乞丐实录 |12名女大学生被侵犯,色魔竟然是个老乞丐
    查看更多热点新闻