要么发表论文,要么灭亡!218篇论文成就谷歌“AI奇迹之年”(2)
2017-03-27 编辑:
围棋游戏一直被认为是人工智能最难挑战的经典游戏,因为在围棋游戏中搜索空间巨大,难以评估棋子的具体位置和移动方向。DeepMind的研究人员让计算机利用”价值网络”评估棋局,”策略网络”选择落子。然后使用人类围棋样例训练这些神经网络,最后利用强化学习使程序在与自己下棋的过程中不断学习,达到专家水平。
在这篇论文中,他们还引入了一种将蒙特卡罗模拟与价值网络和策略网络相结合的新搜索算法。使用这种算法,AlphaGo在与其它的围棋程序比赛中,获胜率达到了99.8%,并最终在与最顶级的人类玩家的比赛中完胜人类——这曾经被认为是一个在近十年内不可能实现的壮举。
2. 《Hybrid computing using a neural network with dynamic external memory》
人工神经网络很擅长感官处理,序列强化和强化学习,但是由于缺乏外部存储器,它表示变量、数据结构和长期储存数据的能力受到了限制。
在论文中,他们引入了被称为”可微分神经计算机(DNC)“的机器学习模型。DNC包含从外部存储矩阵中读取和写入数据的神经网络,这类似于传统计算机中的随机存取存储器。与传统计算机一样,DNC也可以使用其内存来表示和操作复杂的数据结构,同时也能从数据中学习。另外,DNC也可以模仿自然语言中的推理问题。